X
تبلیغات
علم فیزیک - میدان مغناطیسی
تاريخ : 89/12/08 | 5:54 بعد از ظهر | نویسنده : رعنا صدری
میدان مغناطیسی

در الکترو مغناطیس کلاسیک تعریف میدان مغناطیسی به صورت «میدان حاصل از بار الکتریکی در حال حرکت در اطراف آن» می‌باشد.

میدان مغناطیسی از تک بارها، سیمهای حامل جریان، جهتگیری دوقطبی‌های مغناطیسی (آهنرباهای دایمی)، جریان سیال رسانا (میدان مغناطیسی زمین) ایجاد می‌شوند.

نقشه ساده‌ای از میدان مغناطیسی کره زمین که منبع میدان مغناطیسی زمین را به صورت یک آهنربا نشان می‌دهد. قطب شمال زمین در نزدیکی بالای تصویر و قطب جنوب نزدیک پایین آن است. توجه کنید که قطب جنوب آهنربادر اعماق داخل زمین در زیر قطب جنوب مغناطیسی آن است. میدان مغناطیسی زمین حاصل عبور جریان دائم الکتریکی در هسته مایع خارجی آن است

در الکترو دینامیک نسبیتی بین میدان الکتریکی و میدان مغناطیسی تفاوتی وجود ندارد و تعریف میدان الکترو مغناطیسی به صورت «اثر بار الکتریکی در اطراف آن» تعریف می‌شود. چون حرکت کاملاً نسبی در نظر گرفته می‌شود و نمی‌توان بین بار ثابت و بار متحرک تفاوتی قایل شد(متحرک بودن یا ثابت بودن برای ناظرهای مختلف تفاوت می‌کند). نیروی حاصل از این میدان را نیروی لورنتس می‌خوانند.

به بیانی دیگر میدان مغناطیسی میدانی است که توسط یک جسم مغناطیسی یا ذرات، و یا با تغییر میدان الکتریکی، تولید شده‌است  و توسط نیرویی که روی دیگر مواد مغناطیسی و یا حرکت بار الکتریکی اعمال می‌شود شناسایی می‌شود. میدان مغناطیسی در هر نقطه داده شده توسط هر دو پارامتر جهت و شدت (یا مقاومت) مشخص می‌شود، که به عنوان یک میدان برداری شناخته می‌شود. اشیایی که خود میدان مغناطیسی تولید می‌کنند آهنربا نامیده می‌شوند. آهن رباها توسط نیروها و گشتاورهایی که توسط میدان‌های مغناطیسی تولید می‌کنند بر یکدیگرتاثیر می‌گذارند. آهن ربا معمولاً خود را در جهت میدان مغناطیسی موضعی تراز می‌کند. قطبنماها از این اثر برای اندازه گیری جهت میدان مغناطیسی موضعی، تولید شده توسط زمین استفاده می‌کنند. ریاضیات پیچیده که میدان مغناطیسی یک شی را نشان می‌دهد با استفاده از خطوط میدان مغناطیسی نشان داده می‌شوند. این خطوط صرفا یک مفهوم ریاضی است وبه صورت فیزیکی وجود ندارد. با این حال، برخی پدیده‌های فیزیکی از قبیل تراز شدن براده‌های آهن در یک میدان مغناطیسی، به مانند خطوط در یک الگوی مشابه با خطوط فرضی میدان مغناطیسی از جسم را تولید می‌کند. جهت خطوط میدان مغناطیسی که تراز دلخواه برای براده آهنی که بر روی کاغذی که بر روی یک نوار آهنربا قرار دارد، پاشیده شده‌است.نشان می‌دهد. جاذبه متقابل قطب مخالف براده آهن منجر به تشکیل خوشه‌های دراز از براده در امتداد خطوط میدان شده‌است.

قاعده دست راست

جریان الکتریسیته و انتقال شار الکتریکی میدان مغناطیسی تولید می‌کند. حتی میدان مغناطیسی از یک ماده مغناطیسی را می‌توان به عنوان مدل حرکت شار الکتریکی الگو گرفت.  میدان مغناطیسی نیز بر روی حرکت شارالکتریکی نیرو وارد می‌کند. میدان‌های مغناطیسی در داخل و با توجه به مواد مغناطیسی می‌تواند کاملا پیچیده باشد.میدان مغناطیسی با مواد دیگر اثر متقابلی دارد، بنابر این میدان مغناطیسی متقابلی با مواد دیگر ایجاد می‌کند. شرح میدان مغناطیسی در داخل آهنربا شامل دو رشته جداگانه‌است که می‌تواند هر دو به نام میدان مغناطیسی، میدان مغناطیسی B و میدان مغناطیسی H نامیده شود. اینها توسط یک میدان سوم که توصیف حالت مغناطیسی مواد مغناطیسی در درون آنهاست، که مغناطیس کنندگی نامیده می‌شود تعریف می‌شود. انرژی مورد نیاز برای ایجاد میدان مغناطیسی می‌تواند زمانی که میدان از بین می‌رود اصلاح شود. و این انرژی می‌تواند، به عنوان "ذخیره شده" در میدان مغناطیسی در نظر گرفته شود. انرژی ذخیره شده در مواد مغناطیسی به مقادیر B و H بستگی دارد. میدان الکتریکی میدانی است که توسط شار الکتریکی ایجاد شده‌است و این میدان‌ها به طورتنگاتنگی به میدانهای مغناطیسی مربوط می‌شوند؛ تغییر در میدان مغناطیسی میدان الکتریکی و تغییر در میدان الکتریکی میدان مغناطیسی تولید می‌کند. (رجوع کنید به الکترومغناطیس.) ارتباط کامل بین میدان‌های الکتریکی و مغناطیسی و جریان وشار که آنها را ایجاد می‌کنند، توسط مجموعه‌ای از معادلات ماکسول توصیف می‌شوند. با در نظرگرفتن این ارتباط خاص، میدان‌های الکتریکی و مغناطیسی دو جنبهٔ مرتبط از یک موضوع منفرد، به نام میدان الکترو مغناطیسی هستند.یک میدان الکتریکی خالص، در یک چارچوب مرجع، به عنوان ترکیبی از هر دو میدان الکتریکی و میدان مغناطیسی که در یک چارچوب مرجع حرکت می‌کند، مشاهده می‌شود. در فیزیک کوانتومی، میدان مغناطیسی خالص (و الکتریکی) را توسط اثرات ناشی از فوتون‌های مجازی می‌توان درک کردو در زبان مدل استاندارد، نیروی الکترومغناطیسی در تمام مظاهر توسط فوتون واقع می‌شود.در اغلب موارد این شرح میکروسکوپی مورد نیاز نمی‌باشد چرا که نظریه کلاسیک ساده، قانع کننده‌است؛ تفاوت تحت میدان با انرژی پایین تردر اکثر شرایط قابل اغماض است.

جهت میدان مغناطیسی در نزدیکی قطب‌های آهنربا با قرار دادن قطب نما در نزدیک آن مشخص می‌شود. همانطور که دیده می‌شود میدان مغناطیسی به سمت قطب S آهنربا و به سمت خارج از قطب N آن است

میدان‌های مغناطیسی در جوامع قدیمی و مدرن استفاده‌های بسیار داشته‌است. زمین میدان مغناطیسی خود را تولید می‌کند.که در جهت یابی ای که توسط قطب شمال قطب نما که به سمت قطب جنوب میدان مغناطیسی زمین منحرف شده‌است، بسیار حایز اهمیت است.از چرخش میدان مغناطیسی در موتور الکتریکی و ژنراتور بهره گرفته شده‌است. نیروهای مغناطیسی ارائه دهنده اطلاعاتی در مورد حرکت شار از طریق اثر هال هستند. تداخل میدان‌های مغناطیسی در دستگاه‌های برقی مانند ترانسفورماتورها در نظم حوزه‌های مغناطیسی مورده مطالعه قرار گرفته‌اند. مطالعه میدان مغناطیسی به عنوان یک موضوع مجزا از آهنربا در قرن 13 هنگامی که Petrus Peregrinus میدان مغناطیسی آهنربای کروی را مطالعه کردو فرض نمود که زمین خود یک آهنربا است.، آغاز شد. تمایزمدرن بین میدان‌های B و H در قرن 19 کشف شد. رابطه بین میدانهای الکتریکی و مغناطیسی در مجموعه‌ای از معادلات ماکسول در نیمه دوم قرن 19کشف شد. و مفهوم الکترومغناطیس متولد شد. روندی که در پشت معادلات ماکسول قرار داشت در نیمه اول قرن 20 مشخص شد، هنگامی که ارتباط خاص آنها نشان داده شد.. شرح کاملی از الکترومغناطیس، الکترودینامیک کوانتومی و یا QED نامیده می‌شود، که شامل مکانیک کوانتومی که در اواسط قرن 20 کشف شد، است.

میدان مغناطیسی برای دو میدان برداری مختلف استفاده می‌شود، که میدان‌های B و H نامیده می‌شوند توجه  بسیاری از نام‌های جایگزین برای هر دو وجود دارد )نگاه کنید به جداول زیر) برای اجتناب از اشتباه، در این مقاله از میدان B و میدان H استفاده کرده‌است.در هر مورد که هر دوی آنها استفاده شده‌اند از میدان مغناطیسی نام برده شده‌است.

Alternative names for B
name used by
magnetic flux density electrical engineers
magnetic induction applied mathematicians
electronics engineers
magnetic field physicists
Alternative names for H
name used by
magnetic field intensity electrical engineers
magnetic field strength electronics engineers
auxiliary magnetic field applied mathematicians
magnetizing field physicists

خارج از مواد، میدان‌های B و H غیر قابل تشخیص هستند. (آنها تنها در واحدهای خود و مقدار، متفاوتند و درتغییرات زمانی و مکانی تفاوتی ندارند .) تنها در داخل ماده‌ای که تفاوت مهم است. میدان B به جریان بستگی دارد(هم ماکروسکوپی وهم میکروسکوپی مانند حرکت الکترون به دور هسته آن). در حالی که میدان H به جریان‌های ماکروسکوپی و برداری که به پدیده شار مغناطیسی بسیار نزدیک است، بستگی دارد.

میدان B را می‌توان در بسیاری جهات مشابه، بر اساس اثرات آن بر روی محیط اطراف آن تعریف کرد. به عنوان مثال، یک ذره با بار الکتریکی ، q، و حرکت در میدان B با سرعت ، v، نیرویی به نام ، F، ایجاد می‌کند که نیروی لورنتس نامیده می‌شود.(پایین را ببینید.( در واحد SI، نیروی لورنتس برابر است با: \mathbf{F}=q\left(\mathbf{v}\times\mathbf{B}\right) که در آن × بردار ضرب خارجی است.یک تعریف متناوب کاری از میدان B را میتوان از لحاظ گشتاور دو قطبی مغناطیسی در میدان B ارایه داد:

\boldsymbol{\tau}=\mathbf{m_m}\times\mathbf{B}

برای دو قطبی مغناطیسی لحظه‌ای m (در آمپر متر مربع). میدان B در واحد SI تسلا ودر واحد cgs گاوس نامیده می‌شود. (1 تسلا = 10000 گاوس). در واحد SI تسلا برابر است با: (کولن × متر) / (نیوتن × ثانیه) همان طور که از قسمت مغناطیسی قانون نیروی لورنتس می‌توان دید: Fmag = (qv × B). H به عنوان اصلاحی برای B به علت میدان مغناطیسی تولید شده توسط مواد واسطه خواهد بود، به طوری که (در SI) :

\mathbf{H}\  \equiv \ \frac{\mathbf{B}}{\mu_0}-\mathbf{M},

که در آن M مغناطیسی شدن ماده و μ0 نفوذ پذیری مغناطیسی در فضای خالی است (یا پایداری مغناطیسی). میدان H با یکای آمپر بر متر در SI.(A/m) و اورستد (Oe) در cgs اندازه گیری می‌شود. در موادی که M متناسب باB است، رابطه بین B و H را می‌توان به فرم ساده تر نوشت : H = B/μ که در آن μ پارامتر وابسته به مواد به نام نفوذ پذیری است. در فضای خالی، هیچ مغناطیسی وجود نداردM به طوری که H = B/μ هر چند، برای بسیاری از مواد، هیچ رابطهٔ ساده‌ای بین B و M وجود ندارد به عنوان مثال، مواد فرومغناطیسی و ابررساناها خاصیت مغناطیسی شدنی دارند که یک تابع چند ارزشی از B مربوط به پسماند مغناطیسی است.

میدان مغناطیسی و آهن ربای دائم

آهنرباهای دائم اشیائی هستند که میدانهای مغناطیسی مداوم خود را تولید می‌کنند. همه آهنرباهای دائم دو قطب شمال و جنوب دارند. آنها از مواد فرومغناطیسی مانند آهن و نیکل که مغناطیسی شده‌اند ساخته شده‌اند. برای کسب اطلاعات بیشتر در مورد آهنرباها، مغناطیسی شدن و در زیر فرومغناطیسی شدن را ببینید. میدان مغناطیسی غیر یکنواخت مانند اثر قطب ‌های متضاد به دفع و جذب قطب مغناطیسی همنام همدیگر را دفع می‌کنند در حالی که دو قطب مخالف همدیگر را جذب می‌کنند. این مثال خاص از یک قاعده کلی است که آهن رباها یی که میدان قوی تری دارند جذب می‌کنند (یا بسته به جهت دفع می‌کنند). به عنوان مثال، یک قطب مغناطیسی که در نزدیکی قطب مخالف قرار داده شده به سمت میدان مغناطیسی قوی تر کشیده می‌شود. این اثر بستگی به جهت گیری آهنربا نسبت به میدان مغناطیسی دیگر دارد؛ دو قطب همنام در نزدیکی یکدیگر همدیگر را به مناطق دور از میدان مغناطیسی ضعیف تر هل می‌دهند. در بسیاری از موارد، نیرو و گشتاور در آهنربا می‌تواند کاملا با فرض 'شار مغناطیسی' در نزدیکی قطب آهنربا مدل سازی شوند. در این مدل، قطبهای مغناطیسی جذب و دفع یکدیگر به شیوه‌ای مشابه با شار الکتریکی انجام می‌دهند. هر 'شار مغناطیسی' میدا ن B خود را تولید می‌کند و توسط میدان B از دیگر شارهای مغناطیسی متاثر می‌شود. میدان خارجی H نیرویی در جهت H در قطب شمال و در خلاف جهت H در قطب جنوب ایجاد می‌کند. در میدان مغناطیسی غیر یکنواخت هر قطب زمینه‌های مختلف دارد و به عنوان نیروی متفاوتی است. تفاوت در دو نیرو حرکت آهنربا در جهت افزایش میدان مغناطیسی را باعث می‌شود و نیز ممکن است باعث گشتاور خالص نیز شود. پس هر قطب مغناطیسی، منبعی از میدان H است که در نزدیکی قطب‌ها قوی تر است.

شعاع‌های الکترون در یک دایره حرکت می‌کنند. نور نتیجه برانگیختگی اتم‌های گاز در لامپ است

متاسفانه مفهوم قطبهای 'شار مغناطیسی' با دقت آنچه در داخل آهنربا اتفاق می‌افتد را منعکس نمی‌کند (نگاه کنید به فرو مغناطیسی شدن)؛ شار مغناطیسی وجود ندارد. به عنوان مثال، بر خلاف شارالکتریکی، آهن رباها نمی‌تواند قطب‌های جداگانه ای در شمال و جنوب قطب داشته باشند؛ همه آهنرباها جفت شمال و جنوب دارند. علاوه بر این، آهنربای کوچک داخل آهنربا بزرگتر در جهت مخالف به آن چه از میدان H انتظار می‌رود پیچیده می‌شود. شرح فیزیکی صحیح تر مغناطیسی شدن شامل حلقه‌های اتمی جریان که در سراسر آهنربا توزیع شده‌است، می باشد.  در این مدل، یک آهنربا از بسیاری از آهنرباهای کوچک، به نام دو قطبی مغناطیسی که هر کدام یک جفت قطب شمال و جنوب مربوط به جریان الکتریکی دارند، تشکیل شده‌است. هنگامی که در ترکیب آنها به صورت یک آهنربا که قدرت مغناطیسی دارد m. که برای راحتی محاسبات ریاضی است، همچنین با توجه به جهت متناظر با جهت گیری‌های میدان مغناطیسی آن را تعریف می‌کنند. برای آهنرباهای ساده ، m در جهت خط از جنوب تا قطب شمال آهن ربا کشیده شده‌است. نیروی گرانش بین دو آهنربا کاملا پیچیده و وابسته به قدرت و جهت گیری هر دو آهنربا و وابسته به مسافت و و جهت آهنرباهای متصل به یکدیگر.است. نیرو حساس به چرخش از آهن ربا به علت گشتاور مغناطیسی است. نیروی هر آهنربا در هر لحظه بستگی به خود آهنربا و میدان مغناطیسی B  از سوی دیگر، دارد. میدان B یک آهنربا ی کوچک بسیار پیچیده تر است. در ریاضیات، نیرو در یک آهنربای که یک مغناطیسی شدن لحظه‌ای m، مربوط به میدان مغناطیسی Bدارد برابر است با : 

\mathbf{F} = \mathbf{\nabla} \left(\mathbf{m}\cdot\mathbf{B}\right),

که در آن∇ شیب تغییرات مقدار m B. در هر واحد از فاصله و جهت است که افزایش حداکثر m.B را محصول است(نقطه معادله زیر را ایجاد می‌کند.ضرب داخلی:(m · B =mBcos(θکه در آن m و B نشان ازاندازه بردارهای m و B است و θ زاویه بین آنها است .) این معادله صرفا فقط برای آهنرباهای صفر اندازه معتبر است، اما اغلب می‌توان به عنوان تقریبی برای آهن رباهای نچندان بزرگ استفاده کرد. نیروی مغناطیسی در آهنرباهای بزرگتر از تقسیم آنها به مناطق کوچکتر با m مشخص و سپس جمعبندی نیروهای در هر یک از این مناطق تعیین می‌شود.

گشتاور در آهنربا مربوط به میدان B

طرحواره‌ای از آهنربای چهار قطبی. چهار نوک ثابت قطب‌های آهنربا هستند که دو تای آنها با قطب N و دو تا با قطب S مخالفت می‌کنند

گشتاور در آهنربا مربوط به میدان مغناطیسی خارجی می‌تواند با قرار دادن دو آهنربا در نزدیکی یکدیگر در حالی که یکی از آنها شروع به چرخش می‌کنند مشاهده می‌شود. گشتاور مغناطیسی برای به کار انداختن موتورهای ساده الکتریکی استفاده می‌شود. در یک طرح موتور ساده، آهنربابر روی یک شفت که آزادانه چرخش می‌کند ثابت شده‌است که تحت میدان مغناطیسی ردیفی از الکترو مغناطیسیها قرار دارد.. با سوئیچینگ مداوم جریان الکتریکی از هر کدام از آهنرباهای الکتریکی، با توجه به تغییر میدان مغناطیسی آنها، مانند قطب شمال و جنوب کنار روتور، گشتاور حاصل به شافت منتقل می‌شود. میدان مغناطیسی دوار را مشاهده کنید. گشتاور مغناطیسی τ تمایل دارد قطب مغناطیسی با خطوط میدان B در یک امتداد قرار دهد(تا زمانی که m در جهت قطب‌های مغناطیسی است می‌توان گفت m تمایل دارد با B در یک امتداد قرار بگیرد.)به همین دلیل است سوزن مغناطیسی قطب نما به سمت قطب شمال زمین منحرف می‌شود. با این تعریف، جهت میدان محلی مغناطیسی زمین جهتی است که در آن قطب شمال قطب نما (یا هر آهنربایی) تمایل به آن نقطه دارد. به طور ریاضی وار، گشتاور τ آهنربای کوچک متناسب با هر دو ی میدان B اعمال شده مغناطیسی شدن آهنربا m می‌باشد:

\boldsymbol{\tau}=\mathbf{m}\times\mathbf{B}, \,

که در آن × نشان دهنده بردار ضرب خارجی است .در نظر داشته باشید که این معادله شامل تمام اطلاعات کیفی شامل بالامی باشد. هیچ گشتاور مغناطیسی در صورتی که m در امتداد B قرار بگیرد، وجود ندارد(مفهوم ضرب خارجی.) علاوه بر این، در تمامی جهت‌ها گشتاوری که آنها را به جهت B متمایل می‌کند احساس می‌شود.

منابع

مبانی نظریه الکترو مغناطیس، ریتس و میلفورد

آشنایی با حساب تانسوری و نسبیت، درک لاودن



  • ایران آی تی
  • سرکه